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Summary

Multi-angle remote sensing provides a wealth of information for Earth and climate
monitoring, such as the ability to measure the height of cloud tops through stereoscopic
imaging. Indeed, cloud height is an important driver in the radiative balance of the
atmosphere and an accurate global characterization of it is critical for predictive climate
and meteorological research. Further, as technology advances so do the options for
developing spacecraft instrumentation versatile enough to meet the demands associated
with these types of measurements. One such instrument is the Infrared Spectral Imaging
Radiometer, which flew as part of mission STS-85 of the space shuttle Columbia in 1997
and was the first Earth-observing radiometer to incorporate an uncooled microbolometer
array detector as its image sensor.  Specifically, a method for computing cloud-top
height from the multi-spectral stereo measurements acquired during this flight has been
developed and the results are compared with coincident direct laser ranging
measurements from the Shuttle Laser Altimeter. Mission STS-85 was the first space

flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.



Abstract

Multi-angle remote sensing provides a wealth of information for earth and climate monitoring.
And, as technology advances so do the options for developing instrumentation versatile enough to
meet the demands associated with these types of measuremgnts. In the current work, the multi-
angle measurement capability of the Infrared Spectral Imaging Radiometer is demonstrated. This
instrument flew as part of mission STS-85 of the space shuttle Columbia in 1997 and was the first
carth-observing radiometer to incorporate an uncooled microbolometer array detector as its image
sensor.  Specifically, a method for computing cloud-top height from the multi-spectral stereo
measurements acquired during this flight has been developed and the results demonstrate that a
vertical precision of +0.6 km was achieved. Further, the accuracy of these measurements is
confirmed by comparison with coincident direct laser ranging measurements from the Shuttle Laser
Altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR

camera systems for cloud remote sensing.



1. Introduction

Satellite meteorology contributes an incredible wealth of information about the atmosphere of
the earth and its environment, primarily through the collection and dissemination of imagery. This
imagery is acquired using camera systems placed onboard geosynchronous and polar orbiting
spacecraft, and provides operational data about global and regional weather patterns critical to a
large portion of society, particularly during times of severe storms. However, the field of satellite
meteorology is built upon atmospheric remote sensing and the information acquired using remote
sensing techniques is necessarily incomplete. An example of such a shortcoming in the imagery
obtained from meteorological satellites is that the cloud vertical dimension is only indirectly
inferred. Although this may not be of great practical import in general, it is difficult to deny the
importance of the vertical dimension of the atmosphere or its importance for many aspects of
predictive climate and meteorological research.

Because remote sensing observations provide only limited information it is generally necessary
to couple the data obtained from multiple measurement techniques to provide a more complete
picture of the atmosphere. Such is the case with observations designed to remotely measure the
height of cloud-tops, where it is generally necessary to rely upon calibrated imagery of a cloud at
several wavelengths and an independent knowledge of the atmospheric temperature structure in
arriving at a height estimate. ~Several methods of this sort have been developed such as the IR
window technique, the CO»/IR window ratio technique, and the H,0/IR window intercept method.
A review of these is provided by Nieman et al, [1993]. The approach adopted in the current work
departs considerably from these methods, utilizing a purely geometric retrieval of cloud-top height

that recovers the vertical information of the imagery through the application of stereoscopy.



Meteorologists have long recognized the value of using satellite imagery to obtain stereo height
measurements of cloud-tops. Indeed, some of the earliest examples of this effort date back to the
NASA Nimbus Technology satellite program of the early 1960’s. Following a suggestion by
Ondrejka and Conover, [1966], imagery collected by the Nimbus II meteorological satellite was
used by Kikuchi and Kasai, [1968] to yield estimates of cloud height that displayed a vertical
precision of about 2.5 km. Similarly, Whitehead et al., [1969] and Shenk et al., [1975] retrieved
estimates of cloud height from several overlapping photographs obtained during the unmanned
flight of Apollo 6 in 1968, demonstrating a measurement precision of approximately +0.5 km.

With the launch of NASA environmental satellites SMS-1 and SMS-2 in 1974 and 1975,
however, the focus of stereo remote sensing shifted to the use of imagery obtained from
geosynchronous orbit [Bristor and Pichel, 1974]. This imagery is collected using spin-scan
radiometers that required approximately 20 minutes to build up an image over their field of view.
Hence, to be useful for stereo analysis it is necessary to synchronize the operation of these
instruments. Having overcome this operational hurdle, Minzer et al., [1978] demonstrated single-
point estimates of cloud height that were repeatable to within + 0.5 km. Similar experiments were
also performed using radiometers onboard the recently launched NOAA GOES-East and GOES-
West satellites in the latter 1970’s, resulting in several cases studies from which the utility of stereo
imagery was evaluated [Hasler, 1981].

These coordinated experiments and the work of Hasler, [1981] formed the basis of éeveral
investigations including those of severe thunderstorms [Fujita, 1982; Fujita and Dodge, 1983;
Mack et al., 1983], hurricanes [Mack et al, 1983; Rodgers et al., 1983] and cloud emissivity
[Szejwach et al, 1983]. Additionally, multi-satellite observations were extended to include

combinations such as the GOES-West and the Japanese GMS-1 geosynchronous satellite [Fujita,



1982], and the GOES-East and TIROS-N polar orbiting satellites [Hasler et al., 1983]. Through
these experiments the importance of stereo imagery as a diagnostic tool for satellite meteorology
and cloud remote sensing was powerfully demonstrated. It should be noted, however, that at this
time considerable human effort and interpretation was required to retrieve height estimates from
stereo observations. And, it was not until the advent of multiprocessor computer systems and the
work of Hasler et al., [1991] that this process was largely automated. Today, much more powerful
computer systems are available yet with the exception of Wylie et al, [1998] and Mahani et al.,
[2000], the use of GOES satellites for further stereo imaging experiments has received little
attention.

Around the same time that geosynchronous satellite imagery was most widely used for stereo
retrievals, Lorenz, [1985] was advocating the use of the Along-Track Scanning Radiometer (ATSR)
for the retrieval of cloud-top heights and cloud motion winds from low earth orbit. The ATSR
scans in a circular motion with the forward scan meeting the ground track under a nadir angle of 55
degrees, while the backward scan points vertically downward [Prata et al, 1990]. Launched
aboard ERS-1 in 1991, this instrument acquires imagery in four channels that include both short
wave and thermal infrared. These data have been used by Prata and Turner, [1997] to demonstrate
the retrieval of cloud heights with a nominal precision of +1 km. Fiona et al. [2001] have used
similar imagery from ATSR-2, launched in 1995, to provide cloud identification, amount, and
altitude at high latitudes.

Lastly, the Multiangle Imaging Spectro-Radiometer (MISR) instrument was launched aboard
the Terra spacecraft in 1999 with nine push-broom cameras pointing both fore and aft, at angles as
large as 70.5 degrees off of nadir [Diner et al, 1998]. Each camera includes four linear array

detectors that acquire data in four spectral channels ranging from the blue to the near-IR.



According to modeling studies of Horvath and Davies, [2001], the MISR instrument is expected to
provide height estimates with a vertical precision of 300 - 400 m. However, the choice of
wavelength channels restricts such measurements to sunlit conditions only.

The current work presents cloud stereo measurements made with the Infrared Spectral Imaging
Radiometer (ISIR), flown aboard mission STS-85 of the space shuttle Columbia in 1997. This
instrument was the first among earth and climate imaging systems to employ an uncooled
microbolometer array detector as its image sensor. And, although it was not designed specifically
as a stereo imaging instrument use of this extended array makes such measurements readily
available. It is the goal of the current work to examine the utility of the ISIR instrument design and
detector technology as the basis of an operational cloud stereo imaging system. This begins with a
description of the instrument and the measurements that were made with it from the Space Shuttle.
Sample stereo results are presented and the estimated cloud heights are compared to ranging data
obtained simultaneously with the Shuttle Laser Altimeter [Bufton, 1989; Garvin et al., 1998]. The
paper concludes with a discussion of these results within the context of the requirements of an

operational, infrared stereo imaging system.

2. ISIR Instrument Description

The Infrared Spectral Imaging Radiometer was developed around an uncooled microbolometer
array detector for the purpose of assessing the potential of this technology as a space-borne
radiometric imaging sensor. The advantage offered by this technology over other IR detectors is
that the microbolometer array provides sensitive thermal infrared imagery without the need for
cryogenic, mechanical, or electrical cooling systems. As such there is a large commercial market for

these detectors particularly in the production of night-vision cameras for law enforcement and



military personnel. However, these detectors provide sensitivity in excess of what is required for
these commercial applications and which approaches the 120 mK resolution requirement that is
typical of infrared radiometers used in satellite meteorology. This high performance combined with
the elimination of the need for cooling make microbolometer arrays attractive devices around which
to develop infrared payloads tailored to the demands of small satellite missions.

The ISIR instrument was designed and built by NASA Goddard Space Flight Center and Space
Instruments Incorporated, under the auspice of the Small Business Innovative Research program. It
is a compact spectral pushbroom imager that provides calibrated infrared measurements in three 1-
micron wide spectral bands centered at wavelengths of 8.55-, 10.2-, and 11.8 microns. A fourth
channel is included for measuring broadband radiation covering the spectral region of 7 to 13 um.
The spatial resolution of the imagery is approximately 250 m with a swath width of 90 km, when
operated from Shuttle orbit. The IFOV of each pixel is 903 + 3 urad.

A primary objective in the development of the ISIR instrument was to arrive at a compact
design that could be easily accommodated within a Shuttle Hitchhiker vessel known as a Get Away
Special (GAS) can. Shown in Figure 1 is the resulting instrument design, which includes an optics
module, an electronics module, and a calibration assembly. Also included within the instrument is
an onboard blackbody source whose temperature is controlled using a stack of thermoelectric
coolers. This source is mounted outside of the optical axis and periodically the moveable calibration
assembly is positioned such that it projects an unfocused image of the calibration source through
the lens assembly and onto the focal plane. When obtaining imagery of the earth this calibration
arm remains outside of the optical path.

The> optics module is composed of a multi-element lens system, four spectral filters, and the

infrared detector package. The lens assembly images directly onto the focal plane with a speed of



F/0.8 and is optimized for operation in the 8- to 14 um wavelength region. The spectral filters are
each one inch in diameter and are composed of several multi-layer interference coatings deposited
upon Ge/ZnSe substrates. Each is mounted within a filter wheel that positions them directly above
the detector focal plane. The electronics module houses 8 printed circuit boards that control the
operation of and communication with the camera. These are located in close proximity to the
detector to reduce both instrument volume and electrical noise pickup. The ISIR instrument also
includes two large-capacity, 8mm tape drives capable of storing 14GBytes of data when
compressed at an average 2:1 compression ratio. These tape drives are not included in Figure 1.
The uncooled infrared array detector incorporated into the ISIR instrument is an early prototype
model manufactured by Lockheed Martin Infrared Systems. It provides a format of 327x246 pixels
each 46.25 um in size. The array is assembled into a housing package, which is covered with a thin
germanium window and sealed hermetically. This package is then integrated onto a front-end focal
plane board that provides the readout electronics. Also included in this imaging module are a video
signal processing and controller electronics card, and a power supply card. The imaging module

provides a rolling readout of the detector array with 14-bit precision at a rate of 60 frames/second.

3. Experiment Description

The Infrared Spectral Imaging Radiometer was included as a Hitchhiker payload experiment
onboard the space shuttle Columbia as part of mission STS-85 in August of 1997. During this
mission nearly 60 hours of multi-spectral earth imagery was collected over a period of 10 days.
These data were obtained in four thermal IR channels with the spectral selection being
accomplished through the use of a filter wheel. A complete cycle of the four filters required

approximately 6.67 seconds; a period dictated by the requirement for contiguous imagery and made



necessary by the Shuttle altitude. The ISIR instrument flew concurrently with several other
Hitchhiker payloads including the Shuttle Laser Altimeter. The SLA instrument is a surface ranging
lidar that additionally provides direct &etection measurements of cloud-top height. Mission STS-85
was the first space flight to combine a laser ranging instrument and a thermal IR camera for cloud
remote sensing.

The use of an extended array detector in ISIR, coupled with the fofward motion of the Space
Shuttle, made possible the use of a frame averaging technique known as Time Delay and
Integration. Using this technique, the S/N ratio of the acquired imagery is improved by integrating
successive rows of detectors in a time-delayed sequence, adding the signals from pixel elements
originating at the same earth location. This approach requires that the readout of the camera be
synchronized with the forward motion of the orbiting platform. Given the design of the ISIR optics
and the limitations of the detector electronics the required synchronization was optimal at an orbital
altitude of 140 nautical miles. The Shuttle operated at an altitude of approximately 160 nautical
miles for most of mission STS-85. During this time imagery was acquired, but with fractional pixel
blur. On Day 10 a burn of the main thruster was performed to reduce the altitude to accommodate
high-resolution imagery by the ISIR experiment for the last two days of the mission.

The use of TDI necessarily imposes constraints upon the attitude of the orbiting platform, the
severity of which depends upon the number of successive rows desired in the Time Delay and
Integration average. For ease of computation, it is desirable to restrict the forward motion of the
platform to one dimension of the detector array. Doing so simplifies considerably the relative
registration of the imagery and allows for precise timing of the detector readout. The rotation of the
earth, however, presents a challenge to maintaining this alignment as its contribution to the scene

velocity varies with latitude. Thus, to obtain the highest pixel resolution it is necessary to



continually slew the instrument yaw to counter this effect and maintain the desired alignment. In
the measurements of the current work the attitude thrusters of the Shuttle provided the necessary
slew adjustments.

During the majority of mission STS-85 the Shuttle orientation was maintained relative to the
ground velocity vector with a precision of 0.5 degrees. 'Upon reducing the orbital altitude to 140
nautical miles, the Shuttle was operated in a special low cross-track motion, or ‘Zero-Doppler’,
steering mode. This operating mode provided a precision of 0.1 degrees relative to the ground
velocity vector. At the higher orbital altitude 10 rows were included in the TDI average. When at
an altitude of 140 nautical miles the size of the TDI average was increased to include 40 rows. In
either case the cross-row drift did not exceed 1/8 pixel during the time required to accomplish the
TDI average. The orientation of the detector array relative to the Shuttle was set prior to launch,
after receipt of the flight plan.

To provide calibrations of the camera performance an internal blackbody was included within
the. ISIR instrument. This blackbody was permanently mounted off-axis and a moveable mirror
was used to project an image onto the detector when a calibration was required. Additionally, the
Shuttle often performed attitude maneuvers in support of the 14 other Hitchhiker experiments
included on this mission. Hence, views to deep space were typically acquired just prior to and just
after nadir observations of the earth. Together, these observations of cold space and those of the
internal blackbody provided two-point calibrations. Measurements of the internal blackbody were
performed approximately every 5 minutes. Observations of space were obtained every 30 to 60

minutes.

4. Methodology
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Stereoscopic retrieval of cloud height necessarily requires that each scene be viewed from two
perspectives. This dual-perspective imagery can be acquired either by using two separate
instruments to view the same scene simultaneously or a single instrument to view a scene
sequentially from two locations. Both techniques present observational challenges. The use of
multiple instruments requires that the analysis contend with differences in instrument design, and
unless they are flown in formation stereo imagery will be limited to only those times of coincidental
pointing. The challenge presented by using a single instrument is that the two perspectives must be
acquired before the cloud scene changes appreciably. Fundamental to the design of the ISIR
instrument is the concept of viewing the same scene sequentially from multiple locations.

As stated, a filter-wheel design is implemented to provide multi-spectral imagery with an
approximate 16.8 x 10.4- degree FOV focused onto the extended infrared array detector at any
given instant. Using this approach the imagery appears to be in continual motion with features
entering on one side and exiting on the opposing side in response to the forward motion of the
Shuttle. Radiometric samples are obtained sequentially in each of the four spectral channels before
the scene has sufﬁcienf time to pass. Thus, encoded in the imagery of the spectral channels are
different perspectives, a comparison of which reveals objects at different altitudes appearing to
move relative to one another as a result of parallax. Quantifying this apparent motion provides the
necessary mechanism for retrieving the altitude information.

This quantification begins by locating common scene features in the imagery of a pair of
spectral channels. To do so, at least two pixels must be used to define a brightness variation in the
reference image that is subsequently identified in the search image, with the presence of noise
increasing this minimum pixel requirement. In the current work the reference image is divided into

a coarse grid of pixel regions, each element of which is registered by searching out the same
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brightness variation in the companion search image. The best match is assumed to be at that
location where the value of % is a minimum. Considerable a priori knowledge of the relative
location of the chosen window region within the imagery of the two spectral channels exists as both
the orbital motion of the spacecraft and the pointing of the instrument are well known. Thus, when
performing this relative registration the search is restricted to a small region about the expected
position. Additionally, the search is restricted to one dimension of the image as the Shuttle attitude
was controlled to limit the amount of cross-track motion that occurred during the collection of data
to less than a single pixel.

Once a match is found between the reference and search images, each pixel within the selected
window region is assigned the determined value of displacement and the search is performed for the
next window region. The optimal choice of window size that should be used in this pattern
matching procedure is not known a priori. Broadly, it can be defined as that which maximizes the
probability of high correlation, but this depends upon the scale of the image features and the
performance of the detector. Previous researchers have addressed this shortcoming by employing
telescoping techniques [Hasler et al., 1991], or through experimentation with a variety of window
sizes [Fiona et al., 2001]. In the current work, the adopted approach is to repeat the registration for
several choices of grid resolutions thereby providing several estimates of displacement for each
pixel, from which a weighted average is subsequently calculated. The highest resolution grid that is
used consists of 3 x 3 —pixel regions. The lowest resolution grid is made up of window regions that
are 22 x 22 —pixels in size.

The uncooled infrared array detector used in the ISIR instrument was an early prototype model
that exhibited a considerable amount of fixed pattern noise. The onboard blackbody source is used

to remove the majority of this noise through frequent calibrations. However, for regions of an
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image showing little variation in brightness, a high probabiiity remains that the registration
algorithm will search out the residual noise pattern rather than the desired feature. When this
occurs, the registration of a pixel will be erroneous and the search algorithm returns identical
estimates of feature displacement regardless of the grid resolution that is used. When not dominated
by fixed pattern noise, the search algorithm returns estimates of feature displacement exhibiting a
statistical variation for each pixel. Those pixels that do not exhibit at least a 5 percent scatter in
registration among the different grid resolutions are discarded and replaced through triangulation.

After the average displacement has been calculated for each pixel, a correction is applied to
normalize the resulting values to that of the nadir pixel. Even though each pixel shares a common
angular IFOV the nadir pixel represents the smallest footprint and those pixels at the edges of the
detector represent the largest. As a result, features sharing a common altitude translate across the
image at different rates depending upon their location on the detector with the rate of translation
being greater across those pixels representing smaller footprints. Hence, without this correction
stereo cloud heights are underestimated for those pixels not at the center of the array. The top panel
of Figure 2 illustrates the sinusoidal variation of the footprint across the image and the bottom panel
shows the corresponding correction that must be applied to the values of pixel displacement. These
results were modeled using the measured value of 903 + 3 urad for the IFOV.

The normalizing correction shown in the lower panel of Figure 2 is repeated four times within
an image. This banding is illustrative of the manner in which the spectral channels are combined to
provide contiguous stereo results. Four filters were cycled in front of the detector array to provide
multi-spectral imagery. And, due to the forward motion of the Shuttle the scene moves roughly Y4
of the way across the image during the time allotted to a single channel. The imagery obtained in

any two consecutive channels thus contains overlapping scene information for approximately % of
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the image, albeit from slightly different perspectives. The stereo analysis is performed using those
spectral channel pairs that have only % of an image in common, with the common imagery
appearing at opposing sides of the detector array. It is in this circumstance that the maximum 7.8-
degree change in perspective is achieved.

The data displayed in Figure 2 are model results and in practice it is more reliable to apply a
correction that has been determined experimentally using imagery of broken, single-altitude cloud
layers that are nearby in.the orbit. The requisite broken cloud imagery is easily identifiable as the
attendant clouds exhibit a largely uniform brightness in the infrared. An example of an
experimentally determined correcﬁon is shown in Figure 3. Surface imagery can also be used in
some cases. However, as ISIR was not optimally designed for surface measurements the preferred
approach is one of using cloud scenes. Finally, it should be noted that the imagery from all four

spectral channels is required to obtain contiguous stereo results.

5. Measurements

The stereo retrieval algorithm described above has been applied to imagery collected with the
ISIR instrument during mission STS-85 and the results of three representative cases have been
chosen for presentation. These have been selected with the goals of demonstrating 1) the feasibility
of the stereo fetrieval algorithm, 2) the accuracy of the stereo height retrievals, and 3) the vertical
precision with which the height estimates are achieved. The first example employs imagery of a
cloud scene that exhibits well-defined features and which readily facilitates qualitative visual
confirmation of the stereo results. The second illustrates the accuracy of the stereo results using
imagery of an optically opaque cloud system that spans several kilometers in altitude. The third

provides an estimate of the vertical precision of the stereo measurements using imagery of a single-
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altitude, broken cumulus cloud layer over a uniform temperature ocean. In the latter two cases the
stereo height estimates are compared with the results of direct detection ranging using the Shuttle
Laser Altimeter.

The first example of data collected during the ISIR experiment is shown in Figure 4. These data
represent an approximate 18-second segment of more than 60 hours of data, and are a compilation
of three individual frames. The forward motion of the shuttle is in the long dimension of the image
and the aspect ratio matches that of the camera. The panel on the left contains a false-color image of
the radiance as measured through the 10.2 um channel of the instrument. The panel on the right
contains the corresponding cloud-top heights that were retrieved using the stereo algorithm
described above. This imagery is particularly useful as a first test of the stereo retrieval algorithm as
it contains strong cloud features at several different altitudes including a distinct aged contrail. As
is seen here, the results of the stereo analysis distinguish between the various cloud layers,
revealing the low-level cumulus clouds to be at an altitude around 1.5 km, the mid-level clouds near
5 km, and the contrail reaching as high as 8 km.

When viewed in the image of calibrated radiance the mid-level cloud near 5 km, located in the
upper right hand corner of the images of Figure 4, appears to be a possible mixture of semi-
transparent clouds at different altitudes. Such cloud layers present an obstacle to the accurate
retrieval of height using stereo techniques and the utility of this method is often reduced as a
consequence. The reason being that the blend of partially transmitting layers makes pattern
matching difficult and less well defined. The stereo technique implemented here uses a simple
pattern matching algorithm, the ability of which to distinguish partially transmitting clouds is

limited. As such, the 5 km estimate that result for this mixture of clouds is likely an average of |
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those above and below this level. More sophisticated algorithms are required to separate the
various semi-transparent cloud features.

During mission STS-85 the shuttle Columbia became the first space-based platform to combine
laser ranging and thermal IR cloud remote-sensing payloads. The resulting combined data set is'
thus unique in satellite meteorology, providing an unprecedented opportunity to validate the stereo
results through a comparison with direct detection measurements. Additionally, the high precision
lidar measurements can be used to quantify the variability inherent to the cloud-top, thereby
removing the ambiguity between this Variability and the vertical precision of the stereo
measurement. Prior to launch, the ISIR instrument was aligned to the Shuttle Laser Altimeter so
that a direct comparison of the two measurement techniques could be made. The Shuttle Laser
Altimeter was designed to collect surface altimetry and was not optimized for cloud detection or
profiling. Still, the data that were collected routinely contain height information on cloud-tops that
provide meaningful comparisons with the ISIR stereo results.

To validate the accuracy of the stereo retrieval algorithm against the SLA data an optically thick
cloud scene that results in strong lidar returns, and which spans a wide range of altitudes is optimal.
A quantitative comparison between the ISIR stereo and SLA direct detection results can be
achieved by restricting the retrieved stereo cloud heights to only those that share a common field of
view with the SLA instrument. Such a comparison is shown in Figure 5 where the solid line
represents the results of the stereo retrieval and the diamonds represent the measurements of the
SLA instrument. As expected the stereo results show a much higher degree of scatter than do the
direct detection lidar measurements. However, the two instruments are clearly measuring the same
cloud region and obtaining results for cloud-top altitude that agrees favorably. A notable exception

to this conclusion is seen in the data indexed near 25s, where the cloud is shown by the lidar
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measurements to be multi-layered with surfaces at 4 and 6 km. The scale of this horizontal structure
is too fine to be retained by the stereo algorithm.

The stereo cloud height estimates of Figure 5 are restricted to only those pixels that coincide
with the ground track of the Shuttle Laser Altimeter. It should be noted, however, that while the
footprint of the SLA instrument is contained within a single pixel of the infrared image, an
extended region of pixels is required to arrive at a stereo height estimate. In the current work,
image features located up to 11 pixels from the pixel to which the result is assigned influence each
height estimate. This fact should be recognized when interpreting the results of the stereo height
calculations on the scale of a single pixel. Additionally, pixels located within those regions
displaying insufficient structure to accommodate the pattern recognition algorithm are assigned
height estimates by triangulating nearby results. Thusly, uniform regions of an image can often be
neglected and assigned the height of a nearby cloud layer. Such is the case in F igure 6 where the
segment of ISIR imagery displays scattered cumulus clouds over a largely uniform temperature
ocean.

The results of Figure 6 are used to provide an estimate of the vertical resolution that 1s achieved
with the ISIR stereo measurements. Here the solid curve represents the stereo measurements and
the diamonds represent the direct-detection measurements. The direct-detection measurements
reveal the average height of the cloud-tops to be at 1753 + 179 m. The uncertainty in this value is
primarily the result of variations in cloud-top altitude and is not representative of the precision of
the direct-detection measurement. The stereo measurements reveal the cumulus clouds to be
located at an average altitﬁde of 1826 + 620 m. This standard deviation is a measure of the vertical
precision achieved by the stereo observations as the variability of the cloud-tops, revealed through

the SLA instrument, is small by comparison. Although this precision estimate tends to vary
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somewhat according to the chosen imagery, +620 m is representative of the vertical height
resolution achieved for a single pixel of the ISIR imagery.

The use of laser profiling to define cloud heights is well know for airborne and ground-based
applications. These cloud lidar systems are designed to record an entire profile of the return signal,
up to the signal attenuation limit (Spinhirne et al., 1983). As such they provide measurements of
both the upper and lower cloud boundaries and a profile of the interior of those clouds that present
an optical depth less than unity. For optically thick clouds a region of penetration is sampled and
typically the strongest signal is returned from several hundred meters within the cloud, when
viewing in the nadir. The SLA data system was not designed to accomplish this measurement but
rather to trigger off set signal levels, recording a small portion of the signal immediately prior to
and just after the trigger threshold events. And, due to the design of SLA and various noise
considerations the trigger threshold was set high relative to signals from cloud tops. Consequently,
less dense clouds such as thin cirrus were generally not detected. For those cloud cases where a
trigger was obtained, the threshold detection could be as much as kilometers below the higher thin
layers of the cloud top. For the more uniform status clouds of F igure 5, and those of Figure 6 that
show a consistent detection of the layer, aircraft lidar experience would indicate a true cloud top

within a few hundred meters of the detected threshold altitude.

6. Discussion

Multiangle remote sensing provides several opportunities for advancing our understanding of
geophysical and biophysical parameters [Diner et al., 1999]. Indeed, recent instruments placed in
low earth orbit such as ATSR and MISR have been developed specifically for this purpose.

Additionally, the network of geosynchronous weather satellites can contribute limited multi-angle
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observations, albeit with considerable effort as they currently are not designed to operate in a
manner that easily accommodates the requisite synchronization. As the scientific issues that require
multiangle observations are both rich and diverse, additional instrumentation will undoubtedly be
required in the future. It is the designs of these instruments that can benefit from the continued
advancement of technology offering the potential of greater versatility contained within a design
that is more compact and robust.

The Infrared Spectral Imaging Radiometer was the first earth remote-sensing instrument to
incorporate an uncooled microbolometer array detector as its image sensor. And, its relatively
simple camera design is conducive to providing reliable, operational multiangle imagery. Hence,
the potential is great that the ISIR instrument or a minor variant thereof, can provide a powerful
stereo remote-sensing tool for satellite meteorology. The current work illustrates this mtﬂtiangle
capability through the stereo inversion of cloud-top height. In the discussion that follows three
aspects of the ISIR operation and performance are addressed. These are the achieved vertical
height resolution, the optimization of the stereo retrieval algorithm, and the possibility of measuring
winds simultaneously with cloud heights.

The cloud height measurements of the current work have been shown experimentally to be
precise to within approximately +620 meters. This estimate of vertical resolution was achieved by
comparing stereo height measurements with those obtained simultaneously through direct detection,
using the Shuttle Laser Altimeter. Such an approach is arguably the optimal one for verifying cloud
height and has been advocated by past investigators such as Lorenz, [1985] and Hasler et al,
[1991]. As mission STS-85 was the first to overcome the challenges of including both the laser
ranging and stereo imaging systems on the same space platform, previous investigators were left to

rely upon less reliable characterizations of their achieved measurement precision. Shown in Table 1
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is a summary of all empirical estimates of vertical resolution associated with these previous
measurements as well as the current work, and the methods that were used.

As is evident by the dearth of case data in Table 1, obtaining an empirical verification of
vertical resolution is an elusive task. The Apollo 6 measurements of Whitehead et al., [1969] and
Shenk et al, [1975] were estimated to achieve a vertical resolution of about +0.5 km by
independently assessing the extent of the shadows cast by the clouds themselves. The
investigations of Minzer et al., [1978)] and Hasler, [1981] sought out stereo imagery of terrestrial
features such as mountains and lakes of known elevation for comparison. Using these features and
those of select coastlines they estimated the vertical precision to be as high as +0.15 km, but more
typically 0.3 km. These features are, however, both extended and well defined and as such their
suitability for characterizing the resolution of a cloud measurement is less than ideal. Recognizing
this, Hasler, [1981] estimates the achieved vertical resolution to be approximately +0.5 km for a
given measurement of cloud height. Prata and Turner, [1997] also used terrestrial features to
estimate the vertical resolution of the ATSR instrument at approximately +1 km. The vertical
resolution achieved in the current work is approximately +0.6 km, not considerably less than that of
previous investigations and exceeding that of ATSR.

This vertical resolution represents that of a single pixel of the ISIR image. The average cloud
height, however, can be identified with considerably more precision by averaging the single pixel
results. This is illustrated in Figure 7, wherein the improvement in the vertical height resolution
that accompanies pixel averaging is seen. The imagery used for this example is the broken cumulus
layer of the previous figure. As stated, the Shuttle Laser Altimeter results show the variability of

this cloud-top layer to be approximately +180 m. The asymptotic precision of the stereo
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measurements in Figure 7 is also approximately this value, requiring a bin size of about 150x150
pixels. This represents a 38 x 38 km area of the ISIR measurements.

Vertical resolution tends to be a compromise between the optical design, the detector
performance, and the stereo retrieval algorithm. The optical design of ISIR provides a maximum
parallax angle of approximately 7.8 degrees and a spatial resolution of about 0.25 km when in
Shuttle orbit. Using these values it is straightforward to calculate that a single pixel of parallax
represents roughly a 1.8 km change in altitude. This approximate agreement with the
experimentally determined vertical resolution lends support to the credibility of the stereo inversion
algorithm, and in particular, the image registration technique. The primary concern in performing
the image registration is that of the optimal selection of the image grid that is used. As stated, the
current work divides the search image into a grid of pixel regions, each of which is subsequently
registered to a comparison image. And, several factors necessarily influence the optimal choice of
grid coarseness including the performance of the detector and the typical scale of the image
features. Choosing a grid that is too coarse will reduce the vertical resolution of the stereo results,
as neighboring cloud features will not be sufficiently resolved. Choosing a grid that is too fine will
also reduce the vertical resolution since the detector noise will impact the results disproportionately.

The optimal choice of grid resolution can be gleaned in the current work by performing a
correlation analysis of the stereo height returns for different selections of grid resolution and the
image brightness temperatures. Clouds tend to be in near thermal equilibrium Withvthe surrounding
atmosphere and the blackbody radiation that is emitted provides a mechanism for measuring the
corresponding temperature. Indeed, a common method of estimating cloud height from infrared
imagery consists of comparing the measured brightness temperature with an atmospheric profile

obtained from a nearby temperature sounding [Nieman, 1993]. This approach to evaluating the
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optimal grid size does have shortcomings as a cloud is not a perfect blackbody and a thin cloud will
exhibit an elevated brightness temperature as it transmits much of the radiation from the warm
surface below. Thus, the correlation will not be exact but should nonetheless give an indication of
the optimal choice of grid size for use in the registration algorithm. This lack of perfect correlation
is in itself an argument for using stereoscopic inversion methods to determined cloud height.

Shown in Figure 8 are the results of this correlation study when applied to the imagery of the
contrail scene shown in Figure 4. The correlation between cloud height and brightness temperature
appears to maximize at around 70-100 pixels, with a 100-pixel region representing a 10x10-pixel
grid. The peak of the curve of Figure 8 is not sharp, however, and it is apparent that a host of grid
choices ranging from 8x8-pixels to 16x16-pixels provide similar amounts of correlation. fhe
current Work obtains stereo height estimates using selections of grid resolution ranging from 3x3-
pixels to 22x22-pixels. And, the correlation results of Figure 8 are used as a weight function when
averaging the estimates from the different grid resolutions. That the correlation is not optimal for a
3x3-pixel grid resolution is, in part, a reflection of the detector noise limitations, as it is not unusual
for the stereo results of as many as % of the pixels to be discarded and replaced with values
obtained through triangulation. Current production model detectors offer a greatly reduced fixed
pattern noise and factor of two improvements in radiometric performance.

A primary reason to measure cloud height is to enable the assignment of wind speed when
observing cloud motions apparent in a time series of satellite images. Winds gleaned in this manner
are known as cloud motion winds and it is the independent measure of cloud height that provides
the needed calibration for this measurement. Lorenz, [1981] discusses two approaches to remotely
sensing cloud motion winds. The first is to couple multiple cameras that can provide two pairs of

stereo imagery. One stereo pair provides an estimate of cloud height that is used to adjust the
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perspective of the second pair for the effects of parallax, leaving only real cloud motion from which
to estimate wind speed.  This option is implemented in the MISR instrument [Horvath and Davies,
2001]. The second approach is to couple a laser ranging system with a single stereo camera. The
laser ranging system provides the requisite independent measure of cloud height that is used
together with the stereo imagery to glean estimates of cloud motion that occurred as a result of
wind.

The current work presents imagery from a single stereo camera system that is coupled to a laser
ranging system.  As such, the second of the above methods is the logical choice for retrieving
cloud motion winds from the infrared imagery collected during mission STS-85. The ISIR
instrument, however, was not ideally configured for this measurement as less than 6.7 seconds
elapsed between the acquisition of the images that make up a stereo pair. With a spatial resolution
of approximately 0.25 km, a single pixel of motion represents a wind speed in excess of 37 m/s. As
such, the stereo retrievals that result from the ISIR design are seen to be largely insensitive to
typical cloud motions. This lack of sensitivity to cloud motion makes the height measurements of
the Shuttle Laser Altimeter particular useful in calibrating the stereo height retrievals. However,
the combined stereo and laser ranging measurements are not particularly useful for retrieving wind

estimates.

7. Conclusions

The ISIR instrument is unique among thermal imaging systems developed for use in satellite
meteorology, being the only one thus far to incorporate an ur}cooled microbolometer array detector
as its image sensor. And, because the development of this detector technology is relatively recent

considerable uncertainty remains regarding its potential for satisfying the demands of infrared earth
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and climate monitoring systems. However, it is fhrough pilot experiments such as the one reported
here that this potential can be assessed. The focus of the current work is upon the possibility of
using this detector technology in the development of an operational stereo cloud remote sensing
instrument. Toward that end, a stereo algorithm was developed to retrieve estimates of cloud-top
height from the multi-spectral imagery collected with this sensor during the STS-85 mission of the
space shuttle Columbia. Cloud-top heights were measured with a resolution of approximately 1620
m in good agreement with that anticipated from the optical design. A comparison with direct
detection measurements of the Shuttle Laser Altimeter confirms the accuracy of the stereo
retrievals.

The ISIR program was designed to generally address the potential of the microbolometer
detector array as a space sensor and not specifically to develop a cloud stereo imaging system, even
though the current work examines the possibility of using this device for this specific purpose.
When placed onboard a spacecraft in low earth orbit rather than on the Shuttle, the vertical height
resolution offered by the ISIR design would be reduced by about a factor of two. Hence, to retain
the vertical precision either the spatial resolution would need to be increased at the expense of the
FOV or a larger format than the 327x246 pixel array would need to be implemented. Uncooled
microbolometer array technology has advanced considerably since the ISIR instrument was built
and flown. Today, microbolometer detector arrays are readily available in formats of 640x480
pixels. Further, only modest technical challenges need to be overcome to produce arrays with
formats of 1024x1024 or larger. The primary hurdle to developing this format is the emergence of
a commercial market that demands such a product. |

In developing an operational stereo imaging system based upon the ISIR design, a useful

modification would be to eliminate the narrow band spectral filters. If the objective of the

24



measurement is solely stereo retrieval then there is little reason not to utilize the full spectral
response of the detector to maximize the S/N of the imagery. In this way the instrument can be
made very small, with sizes comparable to that of head-mounted, military night-vision cameras. An
instrument of this size could easily be accommodated by a host of satellite platforms. This smaller
size also makes possible the use of multiple cameras, each pointing in different directions, instead
of the stereo imaging being performed using only a single detector as with ISIR. Similarly,
compact stereo instruments could be flown in formation on a constellation of small satellites. Using
this approach, it would be possible to measure atmospheric winds as well by observing the amount
of cloud motion that takes place in the intervening time between the passage of the two stereo
cameras.

Lastly, these measurements provide a good pilot experiment for future satellite meteorology
missions that combine infrared stereo imagery and direct-detection lidar. Combined measurements
of this sort would, however, benefit from a lidar system that is able to provide a cloud profile rather
than merely range altitude. Such a system would provide information about the thickness of a
cloud system and the presence of multiple cloud layers; characteristics important to accurately
model cloud microphysical properties. The first operational space borne lidar missions are planned
for the next few years (Spinhirne and Palm, 1996), but current constraints limit sampling to the
nadir for the foreseeable future. Coupling an infrared stereo imaging instrument such as ISIR with
these planned missions would provide a unique opportunity to extend the spatial coverage beyond
that sampled directly by the lidar and to improve the accuracy and understanding of the passive

observations.
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TABLE CAPTIONS

Table 1. An empirical determination of the achieved vertical resolution requires an independent
measure of cloud height to which the stereo estimates can be compared. Shown here are the
published estimates of previous investigators and the methods that were used to arrive at these

estimates.
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FIGURE CAPTIONS

Figure 1. The Infrared Spectral Imaging Radiometer was included among the complement of
Hitchhiker instruments aboard mission STS-85. Operating from the space shuttle Columbia, the
ISIR instrument was the first space-borne cloud radiometer built around an uncooled

microbolometer array detector.

Figure 2. Each pixel of the ISIR instrument shares a common angular IFOV and the corresponding
footprint follows a cosine variation (shown in the top panel) about the nadir pixel. Hence, a
correction factor (shown in the bottom panel) must necessarily be applied to the resulting cloud

height estimates.

Figure 3. The correction factor that must be applied to the cloud height estimates can be gleaned
experimentally by performing the stereoscopic height retrieval using imagery of single-layered,
broken clouds nearby in the orbit. Such cloud scenes are readily recognizable in the ISIR infrared

imagery.

Figure 4. The panel on the left shows a sample of the imagery obtained using the ISIR instrument
during mission STS-85. These data have been calibrated into units of brightness temperature, as
measured through the 10.2 um channel of the instrument. The panel on the right shows the
corresponding estimates of cloud height obtained stereoscopically. Here, a multi-layered cloud

system is seen that includes an aged contrail at an altitude near 8 km.
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Figure 5. Prior to launch the ISIR instrument was aligned with its FOV centered on the ground-
track of the Shuttle Laser Altimeter to facilitate a comparison of the measurements provided by the
two instruments. Shown here is a comparison of cloud height estimates obtained stereoscopically
and through direct detection for an optically thick cloud scene that reaches as high as 6 km in

altitude.

Figure 6. A scene of broken cumulus clouds is used to estimate the vertical resolution of the
stereoscopic cloud height measurements by comparing them with direct detection measurements
obtained from the Shuttle Laser Altimeter. Inversion of the ISIR stereo imagery results in an

average cloud height of 1826 + 620 m whereas the direct detection measurements of the Shuttle

Laser Altimeter reveal an average height of 1753 + 179 m.

Figure 7. The average height of a cloud layer can be determined more precisely than that of a
single pixel through binning the stereo results. This is demonstrated here by binning the imagery of
the single cumulus layer seen in the previous figure. The asymptotic precision of the stereo results
is seen to be approximately +180 m for this cloud layer, in agreement with the cloud-top variability

measurements of the Shuttle Laser Altimeter.

Figure 8. The correlation between cloud height and brightness temperature provides a means to

determine the optimal grid size for use in the registration of the ISIR imagery. Using the imagery

of Figure 4 it is seen that an approximate 10x10 -pixel grid provides the best correlation between
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the brightness temperature and stereoscopically derived cloud height. These results are used to

- weight the average of stereo height estimates obtained using different grid resolutions.
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Table 1. An empirical determination of the achieved vertical resolution requires an independent
measure of cloud height to which the stereo estimates can be compared. Shown here are the

published estimates of previous investigators and the methods that were used to arrive at these

estimates.

Stereo Measurement Platform Vertical Verification
Resolution
Whitehead et al., [1969]; | Apollo 6 +0.5km Cloud Shadows

Shenk et al., [1975]

Minzer et al., [1978]

GEO, separated by

Approx. £ 0.3 km

16 mountain

32° longitude features, 1 lake
Hasler, [1981] GEO, separated by | Approx.+0.5km | Coastlines,
60° longitude. Mountain lakes
Prata and Turner, [1997] | Low Earth Orbit +1km Mountain
topography
Current Work Space Shuttle +0.6 km Simultaneous Cloud

laser ranging
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Figure 1. The Infrared Spectral Imaging Radiometer was included among the complement of
Hitchhiker instruments aboard mission STS-85. Operating from the space shuttle Columbia, the
ISIR instrument was the first space-borne cloud radiometer built around an uncooled

microbolometer array detector.
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Figure 2. Each pixel of the ISIR instrument shares a common angular IFOV and the corresponding
footprint follows a cosine variation (shown in the top panel) about the nadir pixel. Hence, a
correction factor (shown in the bottom panel) must necessarily be applied to the resulting cloud

height estimates.
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Figure 3. The correction factor that must be applied to the cloud height estimates can be gleaned
experimentally by performing the stereoscopic height retrieval using imagery of single-layered,
broken clouds nearby in the orbit. Such cloud scenes are readily recognizable in the ISIR infrared

imagery.
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Figure 4. The panel on the left shows a sample of the imagery obtained using the ISIR instrument
during mission STS-85. These data have been calibrated into units of brightness temperature, as
measured through the 10.2 um channel of the instrument. The panel on the right shows the
corresponding estimates of cloud height obtained stereoscopically. Here, a multi-layered cloud

system is seen that includes an aged contrail at an altitude near 8 km.
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Figure 5. Prior to launch the ISIR instrument was aligned with its FOV centered on the ground-
track of the Shuttle Laser Altimeter to facilitate a comparison of the measurements provided by the
two instruments. Shown here is a comparison of cloud height estimates obtained stereoscopically
and through direct detection for an optically thick cloud scene that reaches as high as 6 km in

altitude.
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Figure 6. A scene of broken cumulus clouds is used to estimate the vertical resolution of the
stereoscopic cloud height measurements by comparing them with direct detection measurements
obtained from the Shuttle Laser Altimeter. Inversion of the ISIR stereo imagery results in an

average cloud height of 1826 + 620 m whereas the direct detection measurements of the Shuttle

Laser Altimeter reveal an average height of 1753 + 179 m.
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Figure 8. The correlation between cloud height-and brightness temperature provides a means to
determine the optimal grid size for use in the registration of the ISIR imagery. Using the imagery
of Figure 4 it is seen that an approximate 10x10 -pixel grid provides the best correlation between
the brightness temperature and stereoscopically derived cloud height. These results are used to

weight the average of stereo height estimates obtained using different grid resolutions.
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